Fuzzy numbers from raw discrete data using linear regression

نویسندگان

  • Juan Moreno García
  • Luis Jiménez
  • Luis Rodriguez Benitez
  • Ester del Castillo
چکیده

This paper focuses on modelling fuzzy numbers with meaningful membership functions. More precisely, it proposes a method to construct trapezoidal fuzzy number approximations from raw discrete data. In many applications, input information is numerical, and therefore, particular fuzzy sets, such as fuzzy numbers, hold great interest and relevance in managing data imprecision and vagueness. The proposed technique provides an efficient way to obtain trapezoidal numbers using linear regression. The technique is simple, fast, and effective. Preliminary tests are performed using different types of input data: a Gaussian function, a Sigmoidal function, three datasets of synthetic discrete data, and an histogram obtained from a colour satellite image. 2013 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FUZZY LINEAR REGRESSION BASED ON LEAST ABSOLUTES DEVIATIONS

This study is an investigation of fuzzy linear regression model for crisp/fuzzy input and fuzzy output data. A least absolutes deviations approach to construct such a model is developed by introducing and applying a new metric on the space of fuzzy numbers. The proposed approach, which can deal with both symmetric and non-symmetric fuzzy observations, is compared with several existing models by...

متن کامل

Evaluation of hybrid fuzzy regression capability based on comparison with other regression methods

In this paper, the difference between classical regression and fuzzy regression is discussed. In fuzzy regression, nonphase and fuzzy data can be used for modeling. While in classical regression only non-fuzzy data is used. The purpose of the study is to investigate the possibility of regression method, least squares regression based on regression and linear least squares linear regression met...

متن کامل

A matrix method for estimating linear regression coefficients based on fuzzy numbers

In this paper, a new method for estimating the linear regression coefficients approximation is presented based on Z-numbers. In this model, observations are real numbers, regression coefficients and dependent variables (y) have values ​​for Z-numbers. To estimate the coefficients of this model, we first convert the linear regression model based on Z-numbers into two fuzzy linear regression mode...

متن کامل

A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION

This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...

متن کامل

Deriving Fuzzy Inequalities Using Discrete Approximation of Fuzzy Numbers

Most of the researches in the domain of fuzzy number comparisons serve the fuzzy number ordering purpose. For making a comparison between two fuzzy numbers, beyond the determination of their order, it is needed to derive the magnitude of their order. In line with this idea, the concept of inequality is no longer crisp however it becomes fuzzy in the sense of representing partial belonging or de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 233  شماره 

صفحات  -

تاریخ انتشار 2013